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Global exponential stability of hybrid bidirectional associative memory neural networks
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In this paper, the dynamical characteristics of hybrid bidirectional associative memory neural networks with
constant transmission delays are investigated. Without assuming symmetry of synaptic connection weights and
monotonicity and differentiability of activation functions, Halanay-type inequalitigsich are different from
the approach of constructing Lyapunov functionalse employed to derive the delay-independent sufficient
conditions under which the networks converge exponentially to the equilibria associated with temporally
uniform external inputs. Our results are less conservative and restrictive than previously known results.
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[. INTRODUCTION transmission delays is studied in detail. In the model, the
synaptic connection weights are assumed asymmetric and the
During recent decades, a class of neural networks relategonlinear activation functions are not necessarily differen-
to bidirectional associative memo@AM) has been pro- tiable, monotonic, or nondecreasing. By using Halanay-type
posed 1]. These models generalized the single-layer autoaghequalities, we obtain a set of easily verifiable delay-
sociative Hebbian correlator to a two-layer pattern-matchedndependent sufficient conditions for the hybrid BAM with
heteroassociative circuit. Therefore, this class of networkglelays to converge exponentially to the equilibria associated
possesses good application prospects in the areas of pattewith temporally uniform external inputs introduced from out-
recognition, signal and image processing, etc. In Kosko'sside the network. Our results are less conservative and re-
investigation of the global stability of BAM models, the se- strictive than the previously known results, as illustrated by
vere constraint of having a symmetric connection weight maan example.
trix had to be satisfied. However, from the viewpoint of bio-
logical neural networks and their implementations using very Il. GLOBAL EXPONENTIAL STABILITY
large scale integrated circuit or optical technology, it is im- ) ) ) _ .
possible to maintain an absolutely symmetric connection Ve investigate the existence and exponential stability of
weight matrix. Thus, investigation of the stability of BAM the unique equilibrium of hybnd bidirectional associative
networks with asymmetric connections has been a focus df€mory neural networks described by
this field. Recently, a two-layer heteroassociative network,dx(t) p p
referred to as a BAM model with axonal signal transmission=%\" _ e v, Ty (t— o
delays, was proposed by Gopalsamy and #eand by Liao dt aIX|(t)+jzl WiiSy (y](t))+j21 Wiy (t= 7))
et al. [3,4], which led to important advances in many fields
such as pattern recognition, automatic control, and so on. +i,
The stability of this type of network has been extensively dyt) . . (1)
studied. Interested readers may refef2e 8,17. Y -
However, all the existing investigations of BAM models — dt _biyi(t)Jr;l viisi(xi(t))Jri:El vijSi(i(t= o))
with delays were restricted to pure-delay mode@ls8,17. A
hybrid model in which both instantaneous and delayed sig- +J;
naling occur[9-16] has not been studied for BAM neural
networks. We also note that some papers are concerned orf§ i €{1,2,..n}, je{1,2,...p}, t>0. In Eq. (1), x(t) and
with the stability properties of pure-delay BAM models Yj(t) denote the membrane potentials of ttteneurons from
[2—7,17, without providing any information about the tran- the neuronal field§y andFy, respectivelyw;; ,wj; ,vjj ,vf
sient responses and decay rafes., exponential conver- denote the synaptic connection weightsandJ; denote the
gence rates To the best of our knowledge, a general delay-external inputs to the neurons introduced from outside the
independent result concerning the properties of transiemetwork;s;;>0 and7;;>0 denote the time delays required
responses and convergence rates has not been applied to the neural processing and axonal transmission of sigrals;
hybrid BAM models with delay$2—-8,17. >0 andb;>0 denote the rates with which théh neurons
In this paper, the convergence dynamics of hybrid bidi-from the neuronal field&yx andF, respectively, reset their
rectional associative memory neural networks with constanpotentials to their resting states when isolated from other
neurons and inputs;( ) ands;() denote the nonlinear acti-
vation functions. Some authors have studied a pure-delay
*Electronic address: xfliao@cqu.edu.cn model (with w;; =0,;;=0). However, a hybrid model in
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which both instantaneous signaling and delayed signaling oc-

cur (with w;; # 0,v;; # Owj; #0p{; #0) has not yet been in-
vestigated.

The nonlinear activation functiong() ands;() are as-
sumed to satisfy the following requirements:

S ,Sj ‘R—R,

Isi(u)—si(v)|<Lijlu—v|, [sj(u)=sj(v)|<=Mjlu—v],

Isi(u)| <A<+, [sj(u)|<=Bj<+o
for ie{1,2,..n},je{1,2,..p},u,veR, whereL;>0 and
M;>0 denote the Lipschitz constants aAg>0, B;>0 are
constants. The functiors( ) ands;() are defined oR with
values inR.

The initial functions associated with the systéf) are
given by

xi(s)=¢i(s), se[—70], 7= max{7;},
1<i=n
3
yi(s)=¢j(s), se[—0,0], o= max{o},

1<i<n

where ¢;() and ¢;() denote real-valued continuous func-
tions defined o —7, 0] and[—a, 0], respectively.

An equilibrium of Eq.(1) is denoted by ;I:) wherex*
=[x] X5 ... x5 1T Yy =[y1.y5....y5 1", and

1[& .
X =g Wit WS e (L2},
(4)
l n
yT:b—]<I21 (U”-f—vlqi)sl(xr)‘f'\lj y Je{llZYp}

Under certain circumstances, one may want to estimate the

rate of convergence of each or some of the neurons in thd;|y; — v
network. In this section, we employ Halanay-type inequali-
ties (seg[18]) to obtain another set of easily verifiable delay-
X

independent sufficient conditions that ensure the global e
ponential stability of the equilibrium point. For the

convenience of readers, here we provide a scalar version of

the Halanay inequality discussed|[ib8].
Lemma: Halanay inequalityLet v(t)>0 for teR, 7
e[0p°], andtye R. Suppose that

©)

sup v(s)

t—r<s<t

v’(t)s—av(t)+b( for t>1,.

If a>b>0, there exist constantg>>0 andk>0 such that
v(t)<ke Y71 for t>t,.
We first let
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Ky= max[ sup [x(s)—x]],
1<i=n se[—7,0]
(6)
Ko= max| sup |y;(s)—y}|l,
1<j<p|se[-0,0]
where eitheiK; or K, is positive.
Theoremlf condition (3) is satisfied, and letting
p
ai>j21 (|WJ||+|WJTI|)M], iE{l,Z,...n},
()

n

bJ>|Zj_ (|Uij|+|vi71:|)Li’ jE{l,Z,...p},

then the equilibrium;ﬁ) of Eqg. (1) is unique and, moreover,
there exists a constant>0 such that
iD= [<=Ke ™, |yj(t)—y[|<Ke ™ ()
for ie{l,2,..n}, je{1,2,...p}, t>0, where K
=maxK;,K,;}>0 and the constant&; and K, are defined
above.
Proof. The proof of the existence of equilibria for Ed.)
is similar to that presented [@,17]. To establish the unique-
ness of g:) we proceed by supposing the existence of an-
other equilibrium E:) of Eq. (1). We claim thatx* =u;* and
F=vf componentwise for allie{1,2,..n} and j
e{1,2,...p}. Suppose the claim is invalid in the sense that
there exist some componentsdf andu* (sayx; anduy ,
respectively such thatxi # uy . By using Eq.(3), we obtain
from Eq. (4) that

p
alx —ut|= 3, (hwy |+ g M1y~

ie{l,2,..n},

n
(=3 (ol +lofDLilxt —url, je{t2..ph

which then lead to

axg — U [<0,  0=<(|vy|+[vghLilxg —ugl,

je{l1,2,..p}.

This in turn contradicts the assumption thgt# uy . Hence,
the claim holds and the uniqueness of the equilibrium is
proved.

We can now prove the global exponential stability ﬁf)(
of Eq. (1) under conditior(7). We note that){}) denotes an

arbitrary solution of Eq(1) for t>0. We consider the func-
tions P;() andQ;() defined by
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p
Pi(ﬂi):ai_ﬂi_zl (Jwji[+|wi[eX )My, uje[02)

©)

n
Qj(vj)=b;— Vj_i:E:L (Jvijl+[vijleninL;, vje[0p)

for ie{1,2,..n}, je{1,2,...p}. We notice from condition
(7) that

p
ai—zl (|wji[+|wiih)Mj=¢ for all ie{1,2,..n},
=

(10

n
bj—;1(|uij|+|vg|)Li>g for all je{1,2,...p},

where &= min{¢;,&} and

P
&= min [ai_jZl (|Wji|+|WjTi|)Mi]>0’

1<i<n

n
§2: min [bJ_E (|U|J|+|U|TJ|)L|]>O
1<j<p i=1

It follows from Egs.(9) and (10) that P;(0)=¢ and Q;(0)

=¢ for all ie{1,2,...n}, je{l1,2,...p}. We observe that
Pi(ui) and Qj(v;) are continuous foru;,»;e[0~] and,

moreover, P(u;),Q;j(vj)——= as u;,vj—=. Thus there
exist constant$i; , 7 € (0,%) such that

P
Pi(ﬁi):ai_ﬁi_l—izl (lvij|+vfj|e71) =0,

(11)

n

Q 7’j):bj—7’j_'\/‘ji§1 (Iwi| +|wj|e"7) =0

for ie{1,2,..n}, je{1,2,...p}. By choosing 7%
= MMz, [, b V1, V2, V), Where obviouslyn>0, we
obtain from Eq.(11) that

p
Pi(n)=a;— 77—121 (Jwji[ +|wii[)M;e77i=0,

12

n

QJ(”):bi_U_Zl (Joijl +[vijhHLie"1=0

for ie{1,2,..n}, je{1,2,...p}. We define functionsxX;()
andY;() as follows:

Xi(t)=e"|x(t)—x[, Yit)=e|y;()—yF|. (13

We then use Eq(13) to derive a system of Halanay-type

inequalities given by
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d*Xi(t)
dt

= —(a—n)X(t)

p
+j§=:1(|wji|+|wjﬁ|)Mje’”ii( sup Yj(s)),

se[t—7,7] )
14
d*Y(t) (19
dt <—(bj=n)Y;j(t)

n

+§l(lvij|+|vﬁ|)Lie”"”< sup Xi(s))-

se[t—o,t]

We notice from Eq. (13) that X;(t)<K for all i
e{1,2,.n}, te[—7,0] andY;(t)<K for all j {1,2,...p},
te[—o,0], whereK>0 is given by Eq(8). We claim that

Xi(t)=K, for all ie[1,2,...n],

jel1,2,.p],

Suppose that this claim does not hold in the sense that there
is one component amony;() [say, X, ()] and a first time
t,>0 such that

Yi(t)=K

t>0. (15

d* X (t])
X (D<K, te[-mt], X(t)=K, %
(16)
while
Xi(t)=K, i#k, te[—7ti];
(17)
Yi(h=K, te[-o,t].

Substituting Eqs(16) and(17) into Eq. (14), we obtain

d* Xi(ty) °
—ar="| a7t 2 (wyl+|wilemnMm; K,
dt J:]_

and by applying Eq(12) to the above inequality we obtain
0<d*X,(t;)/dt<0, which means a contradiction. Conse-

quently, the claim(15) must hold. We put Eq(13) into Eq.
(15) to obtain Eq.(8), which asserts the global exponential

stability of (;:) of Eg. (1). The proof is completed. ®
Example.Consider the following model:

2
X1(t)=—2x4(t)+0.5 tam( %yl(t— T))
2
+0.5 tanV( 7§y2(t— 7-)) ,
. 2
Xo(t)=—2x5(t)—0.5 tanV( ‘/—§Y1(t— T))

2
+0.5 tanV( 7§y2(t— 7-)) ,
(18)
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y1(t)=—2y,(1)+0.25t ?6— (t—o) 1>—(| T|+| "|)_—— l>_(| T|+| T|)—_
+0. an X [oa v v , v w .
i 1 \/§ : \/§ 1 2 \/?_) \/§ 12 22 \/3

2
—0.25 tan?E\/—jxjt—o-)), Therefore, by the theorem, the systéi8) has a globally

exponentially stable equilibrium.

2
Yo(t)=—2y,(t)+0.25 tan?é Fxl(t —0) )
3 I1l. CONCLUSIONS

2
+0.25 tan?E—xz(t—a)). In this paper, we considered the hybrid BAM with time
v3 delays and obtained a set of easily verifiable delay-
We can easily obtaifM,S"_,[w’|=2~3>1. Hence, the independent sufficient conditions for global exponential sta-
condition in[2] is not sa{tisjfi_ed. Jll_ev\i=7\n+-:1, then the bility. The re_:sults obtained ge_nerallze and improve those of
condition in[4] is also unsatisfied. It is eas]y to obtain [2_8'13‘ W'thOUt the constraints of symmetry OT 'Fhe con-
nection weights and differentiability and monotonicity of the
activation functions, we are provided with more freedom in
0 -05 0.5 designing the circuitry of hybrid bidirectional BAM neural
networks for certain computational tasks. The results for glo-

S

4 bal exponential stabilitysee the inequality8)] can provide
0 — -0.5 —-05 us with relevant estimates on how fast such networks can
V3 perform during real-time computations. We remark that, in
0= 5 ' the circuits of hybrid bidirectional BAM neural networks, the
—-025 025 — 0 parametersa; ,b; are controlled reciprocally by resistors.
V3 Hence, according to the conditidi@), reducing the amount
5 of resistance will increase the convergence fage, the per-
—-025 —-025 O = formance of the networks.
V3

which is not anM matrix. Hence, the conditions ¢¥] are
not satisfied. We can compute rﬁjghMjEjZ:ﬂwjﬂ}:l
—23<0, then the condition if6] does not hold. If we let
Ni=2N3, Nnyj=20W3, r;=r,=0.5 in [17], then we can
computed, =3>2, e,= 7;=2v3>2. Hence, the conditions
in [17] are not satisfied. However, we have
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